Neenakosti prepletanja za simplicialne komplekse / Intertwining inequalities for simplicial complexes
Naziv Tittle |
Neenakosti prepletanja za simplicialne komplekse / Intertwining inequalities for simplicial complexes |
Akronim Acronim |
BI-US/15-16-001 |
Opis Description |
(SI) Cilj predlaganega projekta je preučiti, v kolikšni meri je mogoče posplošiti še en
pomemben rezultat spektralne teorije grafov neenakosti
prepletanja za lastne vrednosti
matrike sosednosti. Če bo uspešna, nam bo ta posplošitev omogočila preučevanje
spektralnega radija matrike sosednosti simplicialnih kompleksov. Prav tako bomo poskušali
posplošiti spektralno karakterizacijo dvodelnih grafih s preučevanjem, v kolikšni meri je le ta
združljiva z obstoječimi posplošitvami pojma dvodelnosti v višjih dimenzij. (EN) The aim of the proposed project is to investigate the extent to which another important result of spectral graph theory of entanglement inequality can be generalised to the eigenvalues of the adjacency matrix. If successful, this generalisation will allow us to study the spectral radius of the adjacency matrix of simplicial complexes. We will also attempt to generalise the spectral characterisation of bipartite graphs by studying the extent to which it is compatible with existing generalisations of the notion of bipartiteness in higher dimensions. |
Trajanje Duration |
01/03/2014 - 31/12/2016 |
Vodja projekta Project Leader |
dr. Dragan Stevanović |
Sodelujoče organizacije Participating organizations |
Mississippi State University |
Oddelek Department |
Oddelek za matematiko IAM |