login
| SL

Kvazikrovi in delovanje končnih grup na grafih / Quasi-coverings and Finite Group Actions on Graphs

Naziv

Tittle

Kvazikrovi in delovanje končnih grup na grafih / Quasi-coverings and Finite Group Actions on Graphs

Akronim

Acronim

BI-RU/14-15-006

Opis

Description

(SI) Naš cilj je poiskati analog Wimanove 4(g+1) zgornje meje za velikost ciklične grupe, ki deluje na Riemannovi ploskvi roda g. Poleg tega načrtujemo posplošiti Oikawov izrek (1956), ki pove zgornjo mejo za grupo, ki deluje na ploskvi roda g z invariantnimi končnimi množicami določenega reda d>0. Nenazadnje, obravnavali bomo tudi naravo Weirstrassovih točk na grafu in poiskali način njihova izračunavanja. Prvi rezultati v tej smeri so bili dobljeni v člankih Bakera in Norinea in njunih študentov.
(EN) Our goal is to find an analogue of the Wiman 4(g+1) upper bound for the size of a cyclic group acting on a Riemann surface of genus g. In addition, we plan to generalize a theorem of Oikawa (1956), which gives an upper bound for a group acting on a surface of genus g with invariant finite sets of a certain order d>0. Finally, we will also consider the nature of Weirstrass points on a graph and find a way to compute them. First results in this direction were obtained in papers by Baker and Norine and their students.

Trajanje

Duration

01/01/2014 - 31/12/2015

Vodja projekta

Project Leader

Tomaž Pisanski

Sodelujoče organizacije

Participating organizations

Sobolev institute of Mathematics, Novosibirsk, Russia

Oddelek

Department

Oddelek za matematiko IAM
University of Primorska

Andrej Marušič Institute
UP IAM

Muzejski trg 2
6000 Koper
Slovenia

tel.: +386 (0)5 611 75 91
fax.: +386 (0)5 611 75 92
e-mail: info@iam.upr.si
Copyright
Accessibility statement