Algebraične karakterizacije in kombinatorične lastnosti (ne)regularnih grafov s tankim modulom s krajiščem nič / Algebraic characterizations and combinatorial properties of (non)regular graphs with thin module of endpoint zero
Naziv Tittle |
Algebraične karakterizacije in kombinatorične lastnosti (ne)regularnih grafov s tankim modulom s krajiščem nič / Algebraic characterizations and combinatorial properties of (non)regular graphs with thin module of endpoint zero |
Akronim Acronim |
BI-US/19-21-019 |
Opis Description |
(SI) V tem projektu bomo študirali graf $\Gamma=(X,R)$ z $d+1$ različnih lastnih vrednosti, za katere algebra matrik generirana s primitivnim idempotentoma $\{E_0, E_1, ..., E_d\}$ ima drugo bazo sestavljeno iz ničelnih $|X|\times|X|$ $(0,1)$-matrik $\{F_0, F=F_1,...,F_d\}$. Rezultati projekta bodo predstavljeni na mednarodnih konferencah (Evropski matematični kongres 2020 v Portorožu) in seminarjih ter objavljeni v uglednih mednarodnih revijah z velikim faktorjem vpliva. (EN) In this project we study the graph $\Gamma=(X,R)$ with $d+1$ distinct eigenvalues for which the algebra of matrices generated by the primitive idempotents $\{E_0, E_1, ..., E_d\}$ has a second basis consisting of zero $|X|\times|X|$ $(0,1)$-matrices $\{F_0, F=F_1,...,F_d\}$. The results of the project will be presented at international conferences (European Mathematical Congress 2020 in Portorož) and seminars and published in reputable international journals with high impact factors. |
Trajanje Duration |
01/10/2019 - 30/09/2021 |
Vodja projekta Project Leader |
Safet Penjić |
Sodelujoče organizacije Participating organizations |
Department of Mathematical Sciences, University of Delaware |
Oddelek Department |
Oddelek za matematiko IAM |